The NIF Polar-Drive Cryogenic Target

D. R. Harding and M. D. Wittman University of Rochester Laboratory for Laser Energetics

20th Target Fabrication Meeting Santa Fe, NM 20–24 May 2012

Summary

We have a viable polar-drive fill-tube target, a concept for the layering sphere that can meet the space constraints of the NIF, and we are adding infrastructure for tritium operations

- Planning for cryogenic polar-drive experiments on the NIF in FY17
- Tested different fill-tube configurations and have demonstrated a viable structure
- Demonstrated an operational cryogenic system that must be integrated with the NIF-ITIC
 - modifying the system for DT operations—ready January 2013
- In the process of miniaturizing the target's thermal environment to allow for easier integration with the existing NIF-ITIC
- We have final engineering drawings for the tritium containment and handling equipment

The baseline NIF polar-drive target design uses ice-layer shimming

The fragile fill-tube assembly strongly influences the design of the Cryogenic System

Fill-tube diameter = 30 μ m Fuel thickness = 350 μ m Reservoir volume = 3.4 ml Fill pressure = 72 psia Fuel remaining in reservoir at 18.7 K = 38% of total

Peformance statistics:

2 of 13 targets tested in the Cryogenic Test System over two years did not leak

Using an additional fiber to support the target is ineffective

Fuel inventory = 21 Ci

General Atomics is working to characterize the performance of the fill-tube assembly and to improve its robustness

No target survived 12-g impulses (3 tests)

A first generation design of the thermal envelope that surrounds the target is functional

- This design provided performance metrics for future improvements addressed by LLE's Target Group
- The surrounding mechanics and interfaces with the NIF-ITIC will be addressed by LLE's and LLNL's engineering groups

Demonstrated control of the ice-layer thickness to $\pm 3~\mu m$ and the ability to form a stable D₂ ice layer—sufficient to progress to DT operations

UR LLE

• 343- μ m D₂ ice layer inside a 3.01-mm-diam capsule with 20- μ m wall and a 30- μ m-diam fill tube

A thermal model of the target, fill tube, and layering sphere is used to refine the design of the cryogenic equipment

Layering sphere/target

Target/ice layer

Mesh Parameters

Minimum volume: $18 \mu m^3$ Maximum volume: 0.8 mm^3 Minimum surface area: $10 \mu m^2$ Maximum surface area: 6 mm^2

 $18\times 10^6 \text{ cells} \\ 36\times 10^6 \text{ faces}$

Fill-tube/glue

A thermal model of the target, fill tube, and layering sphere is used to refine the design of the cryogenic equipment

Temperature boundary conditions taken from measurements in the D₂ experiments

3.3-mm-diam capsule and 16-mm inner-diameter (i.d.) layering sphere

Design variables

- layering-sphere inner diameter
- entrance hole length
- entrance hole diameter

Calculation parameters:

- Time step: 0.2 s
- Convergence (energy residual): 1×10^{-12}
- Run time: ~4 min/iteration—7 to 10 days on an 8-processor, 24-GB system

Calculations predict that a layering sphere with a diam (16 mm) that is one-half of the current system will be acceptable

Calculated ice distribution for a 2-D slice through the target 217- μ m thick ice layer

- Calculated rms roughness affected by the mesh resolution and interpolation within each voxel at the ice/gas interface
- No effect due to the fill tube (30-μm o.d., 10-μm i.d.)

Calculated 2-D power spectrum

Polar plot showing the azimuthal variation of the ice surface from a circle

Re-entrant cylinders at the north and south poles of the layering sphere perturb the ice layer by an amount that can be controlled

Calculated 2-D power spectrum

Polar plot showing the azimuthal variation of the ice surface from a circle

Increasing the thickness of the fill tube to make it more stable and robust perturbs the ice layer; heating the fill tube offsets the effect

Effect of a 200- μ m o.d. fill tube on the ice layer (16.5- μ m rms)

5 μ W coupled into the fill tube offsets the added heat flux

While a larger fill tube will affect the implosion performance, the effect of the fill tube on the ice layer can be mitigated.

A tritium source, clean-up systems, and containment are being added to the existing cryogenic equipment to qualify the layering-sphere design

Tritium, clean-up, and containment equipment

Surrogate NIF-PD-ITIC Equipment

Summary/Conclusions

We have a viable polar-drive fill-tube target, a concept for the layering sphere that can meet the space constraints of the NIF, and we are adding infrastructure for tritium operations

- Planning for cryogenic polar-drive experiments on the NIF in FY17
- Tested different fill-tube configurations and have demonstrated a viable structure
- Demonstrated an operational cryogenic system that must be integrated with the NIF-ITIC
 - modifying the system for DT operations—ready January 2013
- In the process of miniaturizing the target's thermal environment to allow for easier integration with the existing NIF-ITIC
- We have final engineering drawings for the tritium containment and handling equipment